ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0886-1544
    Keywords: axoplasm ; elastic modulus ; viscosity ; motility ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: A magnetic sphere viscoelastometer has been developed to peform rheological experiments in living axoplasm of Loligo pealei. The technique includes the use of a calibrated magnetic sphere viscoelastometer on surgically implanted ferro-magnetic spheres in intact squid giant axons. The axoplasm was discerned to be “living” by the biological criterion of tubulovesicular organelle motility, which was observed before and after experimentation. From these in vivo experiments, new structural characteristics of the axoplasm have been identified. First, analysis of magnetic sphere trajectories has shown the axoplasm to be a complex viscoelastic fluid. Directional experimentation showed that this material is structurally anisotropic, with a greater elastic modulus in the direction parallel to the axon long axis. Second, both magnetic sphere and in vivo capillary experiments suggested that the axoplasm is tenaciously anchored to the axolemma. Third, it was found that axoplasm could be modelled as a linear viscoelastic material in the low shear rate range of 0.0001 to 0.004 s-1. The simplest mechanical model incorporating the discovered properties of the material in this range is Burger's model.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...