ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : 1989
    Associated volumes
    Call number: M 93.0022/21 ; 11/M 92.0764 ; AWI G6-96-0436
    In: Reviews in mineralogy
    Description / Table of Contents: The authors of this volume presented a short course on the rare earth elements to about 80 participants in San Francisco, California, December 1-3, 1989, just prior to the fall meeting of the American Geophysical Union.
    Type of Medium: Monograph available for loan
    Pages: IX, 348 S.
    ISBN: 0-939950-25-1 , 978-0-939950-25-6
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 21
    Classification:
    Geochemistry
    Language: English
    Note: Table of Contents: Copyright; Additional copies. - Foreword and acknowledgements. - Chapter 1. Cosmochemistry of the Rare Earth Elements: Condensation and Evaporation Processes / by William V. Boynton. - Introduction. - Meteorites. - Astrophysical context for interpretation of cosmochemical data. - Solar nebula. - Solar abundances. - Cosmochemical properties of the REE. - REE condensation reactions. - Activity coefficients. - Partial pressures. - Solid / gas distribution coefficients. - Why are the REE volatilities so different?. - Calculated REE patterns. - Early condensates. - Removing REE in the gas. - Comparison with meteoritic data. - Ultra-refractory component. - Group II inclusions. - FUN inclusions. - REE condensation as a function of oxygen fugacity. - Rims on CAI. - What have we learned from the REE?. - High temperatures were achieved in the solar nebula. - A very efficient mechanism for gas/dust separation existed in the solar nebula. - The high nebular temperatures existed for a long time. - A very intense, very brief, heat source also existed. - The solar nebula was a chaotic environment. - Summary. - Acknowledgements. - References. - Chapter 2. Radiogenic Isotope Geochemistry of Rare Earth Elements / by P. Jonathan Patchett. - Introduction. - Long-lived radioactive isotopes of Rare Earth Elements. - 138La-138Ce decay. - 147Sm-143Nd decay. - 176Lu-176Hf decay. - Cemical variations of La/Ce, Sm/Nd and Lu/Hf ratios. - Geochronological studies. - La-Ce and Lu-Hf chronology. - Sm-Nd chronology. - Defining bulk planetary isotopic evolution. - Isotopic study of planetary interiors. - The Moon. - The Earth. - Nd isotopes in studies of terrestrial crustal evolution. - Model Nd ages of continental crust. - Growth curves for the continental crust. - Origin of granitoids. - Nd isotopes and the sedimentary system. - Characterization of whole crustal terranes. - Crustal Lu-Hf isotopic studies. - Major unsolved problems. - Continental crustal growth curve. - Abundance of Archean continental crust. - Origin of mantle isotopic variations. - References. - Chapter 3. Partitioning of Rare Earth Elements between Major Silicate Minerals and Basaltic Melts / by Gordon A. McKay. - Introduction. - Usefulness of the REE for petrogenetic modelling. - Scope of this chapter. - Caveat. - How partition coefficients are measured. - Phenocryst/matrix studies of natural samples. - Experimental measurement of partition coefficients. - Basic experimental approach. - Equilibrium. - Percent level doping technique. - Beta-track mapping technique. - Other experimental approaches. - Henry's law: The applicability of percent-level doping results. - Factors governing mineral/melt partitioning. - Ionic size and charge of trace element. - Crystal field effects. - Cristallographic versus defect sites: The Henry's law question. - Phase compositions. - Oxidation state. - Thermodynamic relationships: Dependence of partitioning on temperature and composition. - Other predictive approaches. - Special applications. - Eu as an oxygen fugacity indicator. - Origin of the Eu anomaly in lunar mare basalts. - REE partition coefficient patterns for the major minerals. - Plagioclase. - Olivine. - Pyroxene. - Low-Ca pyroxene. - High-Ca pyroxene. - Garnet. - Future directions. - Acknowledgements. - References. - Chapter 4. An Approach to Trace Element Modeling Using a Simple Igneous System as an Example / by Gilbert N. Hanson. - Introduction. - Review of trace element equations. - Melting. - Fractional crystallization. - Melting versus fractional crystallization. - Essential structural constituents. - Example of petrogenetic approach. - Discussion and summary. - Acknowledgements. - References. - Chapter 5. Rare Earth Elements in Upper Mantle Rocks / by W. F. McDonough and Fredrick A. Frey. - Introduction. - Massive peridotites. - Massive peridotites: dominantly lherzolite Western Alps - Lanzo. - Western Alps -Baldissero, Balmuccia. - Eastern Liguria, Italy. - Western Liguria, Italy. - Eastern Pyrenees - France. - Ronda, Spain Effects of late stage alteration on REE. - What can be inferred about the melting process and the segregated melts?. - Massive peridotites: pyroxenite layers and veins and their wall rocks. - Amphibole-bearing pyroxenite veins. - Anhydrous pyroxenite layers. - How were the pyroxenite layers created? Evidence for multistage processes. - Implications for mantle enrichment processes (metasomatism). - Massive peridotites: dominantly harzburgite. - Oceanic peridotites. - Ultramafic xenoliths. - Group I spinel peridotites. - Garnet peridotites. - Pyroxenite and related xenoliths. - Models for REE abundance trends in peridotite xenoliths. - Megacrysts, minerals in xenoliths and damong inclusions. - Megacrysts. - Minerals in peridotites and pyroxenites. - Inclusions in diamonds. - Summary: comparison of peridotites from massifs and xenoliths and implications of REE data for Upper Mantle composition. - Acknowledgements. - References. - Chapter 6. Rare Earth Elements in Metamorphic Rocks / by Richard I. Grauch. - Introduction. - REE residence in metamorphic rocks. - REE mobility during metamorphism. - REE content of metamorphic rocks. - Suggestions for future work. - Acknowledgements. - References. - Chapter 7. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes / by Scott M. McLennan. - Introduction. - Rare earth element properties and sedimentary rocks. - Cosmochemical considerations. - Geochemical considerations. - Aqueous geochemistry. - Normalizing and notation. - Sedimentary processes. - Weathering. - Diagenesis. - Sedimentary sorting. - REE and provenance studies. - Sedimentary rocks and crustal abundances. - Sedimentation and plate tectonics. - Archean sedimentary rocks and the Archean crust. - Archean greenstone belts. - REE in sedimentary rocks and crustal evolution. - Acknowledgements. - References. - Chapter 8. Aqueous Geochemistry of Rare Earth Elements / by Douglas G. Brookins. - Introduction. - The trivalent lanthanides (Ln III). - Types of complexes in solution. - Hydrolysis products. - Phosphate complexes. - Carbonate complexes. - Halide complexes. - Complexes with total dissolved sulfur. - Gadolinium-Terbium fractionation?. - Scandium and Yttrium. - Europium (II). - Cerium (IV). - Eh-pH diagrams. - Cerium. - Europium. - Other lanthanides. - Lanthanides in ocean waters. - Lanthanides and actinides. - Concluding remarks. - Acknowledgements. - References. - Chapter 9. Rare Earth Elements in Lunar Materials / by Larry A. Haskin. - Introduction. - The nature of planet moon. - The magma ocean hypothesis and its presumed products. - Lunar REE patterns. - Highland plutonic rocks. - Anorthosites. - Durâtes, troctolites, norites, and gabbros. - Lunar felsite (granite). - Highland volcanic rocks: KREEP. - Mare basalts. - Mare basalt sources as magma ocean products. - Assimilation of crusted material during basalt petrogenesis. - Glassy spherules. - Soils and breccias. - Caveat. - Acknowledgements. - References. - Chapter 10. Compositional and Phase Relations among Rare Earth Element Minerals / by Donald M. Burt. - Introduction. - Geochemical background. - Minerals. - Coupled substitutions. - Vector treatment. - Application to selected mineral groups. - Fluorides. - Carbonates. - Fluorocarbonates. - Monazite, xenotime, zircon, and related phases. - Apatites. - Florencite and related phases. - A-B oxides (niobates, tantalates, titanates, ferrites). - Fergusonitelbetafergusonite, ABO4. - Perovskite, ABO3. - Aeschyniteleuxenite, AB2O6. - Pyrochlore, A1-2B2O6(O,F,OH). - Allanite. - Titanite. - Garnet. - Gadolinite. - Chevkinite/perrierite. - Element distributions: acid-base relations. - Summary. - Acknowledgemen
    Location: Upper compact magazine
    Location: Reading room
    Location: AWI Reading room
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...