ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  Journal of Physical Oceanography, 22 (1). pp. 83-92.
    Publication Date: 2018-03-09
    Description: Antarctic Bottom Water flows into the western North Atlantic across the equator, shifting from the western side to the eastern side of the trough between the American continents and the Mid-Atlantic Ridge as it continues north. This is puzzling because such large-scale motion is thought to be controlled by dynamics that disallows an eastern boundary current. Previous explanations for the transposition involve a (necessarily small-scale) density current that changes sides because of the change in sign of rotation across the equator, or a topographic effect that changes the sign of the effective mean vorticity gradient and thus requires an eastern boundary current. Here an alternative explanation for the overall structure of bottom flow is given. A source of mass to a thin bottom layer is assumed to upwell uniformly across its interface into a less dense layer at rest. A simple formula for the magnitude of the upwelling and thickness of the layer is derived that depends on the source strength to the bottom layer. For a strong enough source, the bottom layer thickness is zero along a grounding curve that separates the bottom water from the western boundary and confines it to the east. A band of recirculating interior flow occurs, supplied by an isolated northern and western boundary current. Similar structures appear to exist in the Antarctic Bottom Water of the western North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...