ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  Journal of Atmospheric and Oceanic Technology, 32 . pp. 2305-2317.
    Publication Date: 2019-09-23
    Description: We investigated the effect of hydrostatic pressure of up to 6000 dbar on Aanderaa and Sea-Bird oxygen optodes both in the laboratory and in the field. The overall pressure response is a reduction in the O2 reading by 3 – 4 % per 1000 dbar which is closely linear with pressure and increases with temperature. Closer inspection reveals two superimposed processes with opposite effect: an O2-independent pressure response on the luminophore which increases optode O2 readings and an O2-dependent change in luminescence quenching which decreases optode O2 readings. The latter process dominates and is mainly due to a shift in the equilibrium between sensing membrane and sea water under elevated pressures. If only the dominant O2-dependent process is considered, Aanderaa and Sea-Bird optodes differ in their pressure response. Compensation of the O2-independent process, however, yields a uniform O2 dependence for Aanderaa optodes with standard foil and fast-response foil as well as Sea-Bird optodes. A new scheme to calculate optode O2 from raw data is proposed to account for the two processes. The overall uncertainty of the optode pressure correction amounts to 0.3 % per 1000 dbar, mainly due to variability between sensors.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...