ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  Journal of Physical Oceanography, 26 . pp. 1142-1164.
    Publication Date: 2018-04-05
    Description: The authors use different versions of the model of the wind- and thermohaline-driven circulation in the North and Equatorial Atlantic developed under the WOCE Community Modeling Effort to investigate the mean flow pattern and deep-water formation in the subpolar region, and the corresponding structure of the basin-scale meridional overturning circulation transport. A suite of model experiments has been carded out in recent years, differing in horizontal resolution (1° × 1.2°, 1/3° × 0.4°, 1/6° × 0.2°), thermohaline boundary conditions, and parameterization of small-scale mixing. The mass transport in the subpolar gyre and the production of North Atlantic Deep Water (NADW) appears to be essentially controlled by the outflow of dense water from the Greenland and Norwegian Seas. in the present model simulated by restoring conditions in a buffer zone adjacent to the boundary near the Greenland–Scotland Ridge. Deep winter convection homogenizes the water column in the center of the Labrador Sea to about 2000 m. The water mass properties (potential temperature about 3°C, salinity about 34.9 psu) and the volume (1.1×1053 km3) of the homogenized water are in fair agreement with observations. The convective mixing has only little effect on the net sinking of upper-layer water in the subpolar gyre. Sensitivity experiments show that the export of NADW from the subpolar North Atlantic is more strongly affected by changes in the overflow conditions than by changes in the surface buoyancy fluxes over the Labrador and Irminger Seas, even if these suppress the deep convection completely. The host of sensitivity experiments demonstrates that realistic meridional overturning and heat transport distributions for the North Atlantic (with a maximum of 1 PW) can be obtained with NADW production rates of 15–16 Sv, provided the spurious upwelling of deep water that characterizes many model solutions in the Gulf Stream regime is avoided by adequate horizontal resolution add mixing parameterization.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...