All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Call number: 9783030394486 (e-book)
    Description / Table of Contents: Seaweeds (macroalgae) represent the most striking living components in the Antarctic’s near-shore ecosystems, especially across the West Antarctic Peninsula and adjacent islands. Due to their abundance, their central roles as primary producers and foundation organisms, and as sources of diverse metabolically active products, seaweed assemblages are fundamental to biogeochemical cycles in Antarctic coastal systems. In recent years, the imminence of climate change and the direct impacts of human beings, which are affecting vast regions of the Antarctic, have highlighted the importance of seaweed processes in connection with biodiversity, adaptation and interactions in the benthic network. Various research groups have been actively involved in the investigation of these topics. Many of these research efforts have a long tradition, while some “newcomers” have also recently contributed important new approaches to the study of these organisms, benefiting polar science as a whole. This book provides an overview of recent advances and insights gleaned over the past several years. Focusing on a timely topic and extremely valuable resource, it assesses the challenges and outlines future directions in the study of Antarctic seaweeds.
    Type of Medium: 12
    Pages: 1 Online-Ressource (xiv, 397 Seiten) , Illustrationen
    ISBN: 9783030394486 , 978-3-030-39448-6
    Language: English
    Note: Contents Part I Introduction 1 Antarctic Seaweeds: Biogeography, Adaptation, and Ecosystem Services / Iván Gómez and Pirjo Huovinen 1.1 Introduction: The Historical Context 1.2 Antarctic Seaweeds in the Wake of Climate Change 1.3 The Book 1.4 Gaps, Emerging Challenges, and Future Directions References Part II Diversity and Biogeography 2 Diversity of Antarctic Seaweeds / Mariana C. Oliveira, Franciane Pellizzari, Amanda S. Medeiros, and Nair S. Yokoya 2.1 The Antarctic Environment 2.2 Seaweeds in Antarctica: Definition and Importance 2.3 Seaweed Taxonomic Studies in Antarctica: Toward a New Species Compilation 2.4 Molecular Taxonomy for the Study of Antarctic Seaweed Diversity 2.5 Seaweed Distribution in Antarctica 2.6 Concluding Remarks: Gaps and Prospects for the Future References 3 Biogeographic Processes Influencing Antarctic and sub-Antarctic Seaweeds / Ceridwen I. Fraser, Adele Morrison, and Pamela Olmedo Rojas 3.1 Antarctica’s Place in the World: An Isolated Continent? 3.2 Physical Oceanographic Processes Influencing Movement of Seaweeds into or out of the Antarctic 3.3 Hitch-Hiking to the Antarctic: Passengers on Seaweed Rafts 3.4 Concluding Remarks References 4 Detached Seaweeds as Important Dispersal Agents Across the Southern Ocean / Erasmo C. Macaya, Fadia Tala, Iván A. Hinojosa, and Eva Rothäusler 4.1 Introduction 4.2 Detached Seaweeds in Antarctica 4.3 Abiotic Factors Influencing Floating Seaweeds 4.4 Biotic Factors Affecting Floating Seaweeds 4.5 Physiology of Floating and Drifting Seaweeds: Traspassing Thermal Barriers References 5 Biogeography of Antarctic Seaweeds Facing Climate Changes / Franciane Pellizzari, Luiz Henrique Rosa, and Nair S. Yokoya 5.1 The Abiotic Setting of the Southern Ocean 5.2 Biogeographic Patterns 5.3 Seaweed Assemblages: Are Antarctic Seaweed Diversity and Richness Changing? 5.4 The Physiological Bases of Macroalgal Shifts 5.5 Deception Island: A Case Study of Opportunistic, Alien, Cryptic and Cryptogenic Species 5.6 Reevaluating Eco-Regions, Isolation, and Endemism in the Southern Ocean 5.7 Concluding Remarks: Prospects for the Future Marine Flora of the Southern Ocean References 6 Comparative Phylogeography of Antarctic Seaweeds: Genetic Consequences of Historical Climatic Variations / Marie-Laure Guillemin, Claudio González-Wevar, Leyla Cárdenas, Hélène Dubrasquet, Ignacio Garrido, Alejandro Montecinos, Paula Ocaranza-Barrera, and Kamilla Flores Robles 6.1 Historical Isolation of Antarctic Marine Macroalgae 6.2 Antarctic Marine Macroalgae: Surviving Quaternary Glacial Cycles in Situ 6.3 Persistence in Multiple Isolated Glacial Refugia Versus a Single Antarctic Refugium 6.4 Antarctic Macroalgae Genetic Diversity: COI and TufA Sequences Data Sets 6.5 Brown, Red and Green Macroalgae: Sharing a Common Pattern of Glacial Impact and Postglacial Populations Recovery? 6.6 Concluding Remarks References Part III Physiology, Productivity and Environmental Reponses 7 Underwater Light Environment of Antarctic Seaweeds / Pirjo Huovinen and Iván Gómez 7.1 Introduction 7.2 Optics of Antarctic Coastal Waters 7.3 Adaptations of Antarctic Seaweeds to Extreme Light Conditions 7.4 Consequences for Light Field Under Current and Future Threats 7.5 Concluding Remarks References 8 Production and Biomass of Seaweeds in Newly Ice-Free Areas: Implications for Coastal Processes in a Changing Antarctic Environment / María L. Quartino, Leonardo A. Saravia, Gabriela L. Campana, Dolores Deregibus, Carolina V. Matula, Alicia L. Boraso, and Fernando R. Momo 8.1 Introduction: Seaweeds in Coastal Marine Ecosystems 8.2 Macroalgae and Carbon Fluxes in Antarctic Coastal Areas 8.3 Macroalgal Biomass Studies in Antarctica 8.4 The Ecosystem of Potter Cove: An Outstanding Case Study 8.5 A Dynamic Growth Model for Antarctic Macroalgae Under a Fast-Changing Environment 8.6 Seaweed Production in Present and Future Warming Scenarios 8.7 Future Prospects References 9 Carbon Balance Under a Changing Light Environment / Dolores Deregibus, Katharina Zacher, Inka Bartsch, Gabriela L. Campana, Fernando R. Momo, Christian Wiencke, Iván Gómez, and María L. Quartino 9.1 Introduction 9.2 Carbon Balance: A Case Study in Potter Cove 9.3 New Scenarios and Their Implications for Algal Photosynthesis 9.4 Concluding Remarks and Future Prospects References 10 Life History Strategies, Photosynthesis, and Stress Tolerance in Propagules of Antarctic Seaweeds / Nelso Navarro, Pirjo Huovinen, and Iván Gómez 10.1 Seasonal Strategies and Life History Cycles 10.2 Photosynthetic Light Requirements of Early Stages 10.3 Effects of Environmental Factors on the Biology of Propagules 10.4 Concluding Remarks: Biology of Propagules under Climate Change References 11 Form and Function in Antarctic Seaweeds: Photobiological Adaptations, Zonation Patterns, and Ecosystem Feedbacks / Iván Gómez and Pirjo Huovinen 11.1 Brief Overview of Form and Function in Seaweeds 11.2 Functional Groups of Seaweeds in the Antarctic 11.3 The Vertical Zonation of Antarctic Seaweeds: A Paradigm of Spatial Distribution of Different Morpho-functional Traits 11.4 Light Use Characteristics as a Major Factor Delineating Physiological Thallus Anatomy of Seaweeds 11.5 Form and Function in the Context of Life Strategies and Stress Tolerance 11.6 Functional Traits of Seaweeds and Properties of Benthic Communitie 11.7 Concluding Remarks References Part IV Biological Interactions and Ecosystem Processes 12 Successional Processes in Antarctic Benthic Algae / Gabriela L. Campana, Katharina Zacher, Fernando R. Momo, Dolores Deregibus, Juan Ignacio Debandi, Gustavo A. Ferreyra, Martha E. Ferrario, Christian Wiencke, and María L. Quartino 12.1 Introduction 12.2 Structural Patterns and Changes in Algal Community Composition during Succession 12.3 Ecological Factors Influencing Antarctic Algal Succession 12.4 Experimental Approaches to Study In Situ Succession of Antarctic Benthic Algae 12.5 Concluding Remarks and Perspectives References 13 Seaweed-Herbivore Interactions: Grazing as Biotic Filtering in Intertidal Antarctic Ecosystems / Nelson Valdivia 13.1 Biological Invasions and Their Impact on the Ecology of Antarctic Coastal Systems 13.2 Recent Introductions of Exotic Macroalgae in Antarctica 13.3 Can Grazers Control Alien Macroalgae in Antarctica? 13.4 Ulva intestinalis as a Case Study in a Simple, Two- Species Assembly Model 13.5 Concluding Remarks References 14 Diversity and Functioning of Antarctic Seaweed Microbiomes / Juan Diego Gaitan-Espitia and Matthias Schmid 14.1 Introduction: Environment and Antarctic Seaweed Host-Microbiome 14.2 Functional Interactions of Antarctic Seaweeds and Their Associated Microbiota 14.3 Deciphering the Structure and Diversity of Seaweed Microbiomes 14.4 Variation of Bacterial Community Diversity in Antarctic Seaweeds 14.5 Conclusions and Future Perspectives References 15 Seaweeds in the Antarctic Marine Coastal Food Web / Fernando R. Momo, Georgina Cordone, Tomás I. Marina, Vanesa Salinas, Gabriela L. Campana, Mariano A. Valli, Santiago R. Doyle, and Leonardo A. Saravia 15.1 Introduction 15.2 Food Webs and Seaweeds 15.3 Network Dynamics and Robustness 15.4 Non-Trophic Interactions 15.5 Final Remarks References 16 Trophic Networks and Ecosystem Functioning / Marco Ortiz, Brenda B. Hermosillo-Núñez, and Ferenc Jordán 16.1 Introduction 16.2 Macroscopic Ecosystem-Network Properties 16.3 Keystone Species Complex (KSC) 16.4 Contribution of Keystone Species Complex to Macroscopic Network Properties 16.5 Constrains and Perspectives Appendix 16.A References Part V Chemical Ecology 17 Chemical Mediation of Antarctic Macroalga-Grazer Interactions / Charles D. Amsler, James B. McClintock, and Bill J. Baker 17.1 Introduction 17.2 Feeding Bioassay Methodology 17.3 Antarctic Macroalgal Resistance to Herbivory 17.4 Macroalga-Invertebrate Interactions on the Western Antarctic Peninsula 17.5 Overview References 18 Brown Algal Phlorotannins: An Overview of Their Functional Roles / Iván Gómez and Pirjo
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...