ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2007-10-08
    Description: Geological complexities such as variable permeability and structure (folds and faults) exist to a greater or lesser extent in all subsurface environments. In order to identify safe and effective sites in which to inject CO2 for sequestration, it is necessary to predict the effect of these heterogeneities on the short- and long-term distribution of CO2. Sequestration capacity, the volume fraction of the subsurface available for CO2 storage, can be increased by geological heterogeneity. Numerical models demonstrate that in a homogeneous rock volume, CO2 flowpaths are dominated by buoyancy, bypassing much of the rock volume. Flow through a more heterogeneous rock volume disperses the flow paths, contacting a larger percentage of the rock volume, and thereby increasing sequestration capacity. Sequestration effectiveness, how much CO2 will be sequestered for how long in how much space, can also be enhanced by heterogeneity. A given volume of CO2 distributed over a larger rock volume may decrease leakage risk by shortening the continuous column of buoyant gas acting on a capillary seal and inhibiting seal failure. However, where structural heterogeneity predominates over stratigraphic heterogeneity, large columns of CO2 may accumulate below a sealing layer, increasing the risk of seal failure and leakage.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...