ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-03-12
    Description: Global warming, which largely results from excessive carbon emission, has become an increasingly heated international issue due to its ever-detereorating trend and the profound consequences. Plants sequester a large amount of atmospheric CO 2 via photosynthesis, thus greatly mediating global warming. In this study, we aim to model the temporal dynamics of photosynthesis for two different vegetation types to further understand the controlling factors of photosynthesis machinery. We experimented with a feedforward neural network that does not utilize past histories, as well as two networks that integrate past and present information, long short-term memory and transformer. Our results showed that one single climate driver, shortwave radiation, carries the most information with respect to prediction of upcoming photosynthetic activities. We also demonstrated that photosynthesis and its interactions with climate drivers, such as temperature, precipitation, radiation, and vapor pressure deficit, has an internal system memory of about two weeks. Thus, the predictive model could be best trained with historical data over the past two weeks and could best predict temporal evolution of photosynthesis two weeks into the future.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...