ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-01-01
    Description: The vorticity-velocity formulation of the Navier-Stokes equations allows purely kinematical problems to be decoupled from the pressure term, since the pressure is eliminated by applying the curl operator. The Vortex-In-Cell (VIC) method, which is based on the vorticity-velocity formulation, offers particle-mesh algorithms to numerically simulate flows past a solid body. The penalization method is used to enforce boundary conditions at a body surface with a decoupling between body boundaries and computational grids. Its main advantage is a highly efficient implementation for solid boundaries of arbitrary complexity on Cartesian grids. We present an efficient algorithm to numerically implement the vorticity-velocity-pressure formulation including a penalty term to simulate the pressure fields around a solid body. In vorticity-based methods, pressure field can be independently computed from the solution procedure for vorticity. This clearly simplifies the implementation and reduces the computational cost. Obtaining the pressure field at any fixed time represents the most challenging goal of this study. We validate the implementation by numerical simulations of an incompressible viscous flow around an impulsively started circular cylinder in a wide range of Reynolds numbers: Re=40, 550, 3000, and 9500.
    Print ISSN: 1687-5591
    Electronic ISSN: 1687-5605
    Topics: Computer Science , Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...