ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-02-26
    Description: Data-model integration plays a critical role in assessing and improving our capacity to predict ecosystem dynamics. Similarly, the ability to attach quantitative statements of uncertainty around model forecasts is crucial for model assessment and interpretation and for setting field research priorities. Bayesian methods provide a rigorous data assimilation framework for these applications, especially for problems with multiple data constraints. However, the Markov Chain Monte Carlo (MCMC) techniques underlying most Bayesian calibration can be prohibitive for computationally-demanding models and large data sets. We describe an alternative method, Bayesian model emulation of sufficient statistics, that can approximate the full joint posterior density, is more amenable to parallelization, and provides an estimate of parameter sensitivity. Analysis involved informative priors constructed from a meta-analysis of the primary literature, and introduced novel approaches to the specification of both model and data uncertainties, including bias and autocorrelation corrections on multiple data streams. We report the integration of this method within an ecological workflow management software, Predictive Ecosystem Analyzer (PEcAn), and its application and validation with two process-based terrestrial ecosystem models: SIPNET and ED2. In a test against a synthetic dataset, the emulator was able to retrieve the true parameter values. A comparison of the emulator approach to standard "bruteforce" MCMC involving multiple data constraints showed that the emulator method was able to constrain the faster and simpler SIPNET model’s parameters with comparable performance to the bruteforce approach, but reduced computation time by more than two orders of magnitude. The emulator was then applied to calibration of the ED2 model, whose complexity precludes standard (bruteforce) Bayesian data assimilation techniques. Both models are constrained after assimilation of the observational data with the emulator method, reducing the uncertainty around their predictions. Performance metrics showed increased agreement between model predictions and data. Our study furthers efforts toward reducing model uncertainties showing that the emulator method makes it possible to efficiently calibrate complex models. This efficient data assimilation method allows us to conduct more calibration experiments in relatively much shorter times, enabling constraining of numerous models using the expanding amount and types of data.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...