ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-03-29
    Description: Atmospheric methane concentration shows a well-known decrease over the first half of the Holocene following the northern hemisphere summer insolation before it started to increase again to preindustrial values. There is a debate about what caused this change in the methane concentration trend, in particular, whether an early anthropogenic influence or natural emissions led to the reversal of the atmospheric CH4 concentration. Here, we present new methane concentration and stable hydrogen and carbon isotope data measured on ice core samples from both Greenland and Antarctica over the Holocene. With the help of a two-box model and the full suite of CH4 parameters, the new data allow us to quantify the total methane emissions in the northern and southern hemispheres separately as well as their isotopic signatures, while interpretation of isotopic records of only one hemisphere may lead to erroneous conclusions. For the first half of the Holocene our results indicate a decrease in northern and southern hemisphere CH4 emissions by more than 30 Tg CH4/yr in total accompanied by a drop in the northern carbon isotopic source signature of about −3 ‰. This cannot be explained by a change in the source mix alone, but requires shifts in the isotopic signature of the sources themselves caused by changes in the precursor material for the methane production. In the second half of the Holocene global CH4 emissions increased by about 30 Tg CH4/yr, while preindustrial isotopic emission signatures remained more a less constant. However, our results show that the increase of methane emissions starting in the mid-Holocene took place in the southern hemisphere, while northern hemisphere emissions started to increase only about 2000 years ago. Accordingly, natural emissions in the southern tropics appear to be the main cause of the CH4 increase starting 5000 years ago in contradiction to an early anthropogenic influence on the global methane budget by East Asian land use changes.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...