ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-08-22
    Description: US background ozone (O3) includes O3 produced from anthropogenic O3 precursors emitted outside of the USA, from global methane, and from any natural sources. Using a suite of sensitivity simulations in the GEOS-Chem global chemistry transport model, we estimate the influence from individual background sources versus US anthropogenic sources on total surface O3 over 10 continental US regions from 2004 to 2012. Evaluation with observations reveals model biases of +0–19 ppb in seasonal mean maximum daily 8 h average (MDA8) O3, highest in summer over the eastern USA. Simulated high-O3 events cluster too late in the season. We link these model biases to excessive regional O3 production (e.g., US anthropogenic, biogenic volatile organic compounds (BVOCs), and soil NOx, emissions), or coincident missing sinks. On the 10 highest observed O3 days during summer (O3_top10obs_JJA), US anthropogenic emissions enhance O3 by 5–11 ppb and by less than 2 ppb in the eastern versus western USA. The O3 enhancement from BVOC emissions during summer is 1–7 ppb higher on O3_top10obs_JJA days than on average days, while intercontinental pollution is up to 2 ppb higher on average versus on O3_top10obs_JJA days. During the summers of 2004–2012, monthly regional mean US background O3 MDA8 levels vary by up to 15 ppb from year to year. Observed and simulated summertime total surface O3 levels on O3_top10obs_JJA days decline by 3 ppb (averaged over all regions) from 2004–2006 to 2010–2012, reflecting rising US background (+2 ppb) and declining US anthropogenic O3 emissions (−6 ppb) in the model. The model attributes interannual variability in US background O3 on O3_top10obs days to natural sources, not international pollution transport. We find that a 3-year averaging period is not long enough to eliminate interannual variability in background O3 on the highest observed O3 days.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...