ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-03-30
    Description: Quantitative precipitation estimates (QPE) at high spatiotemporal resolution are essential for flash flood forecasting, especially in urban environments and headwater areas. An accurate quantification of precipitation is directly related to the temporal and spatial sampling of the precipitation system. The advent of phased array radar (PAR) technology, a potential next-generation weather radar, can provide updates that are at least 4-5 times faster than the conventional WSR-88D scanning rate. In this study, data collected by the KOUN WSR-88D radar with ~1 minute temporal resolution is used as an approximation of data that a future PAR system could provide to force the Ensemble Framework for Flash Flood Forecasting (EF5) hydrologic model. To assess the effect of errors resulting from temporal and spatial sampling of precipitation on flash flood warnings, KOUN precipitation data (1-km/1-min) is used to generate precipitation products at other spatial/temporal resolutions commonly used in hydrologic models, such as those provided by conventional WSR-88D radar (1-km/5-min), spaced-based observations (10-km/30-min), and hourly rainfall products (1-km/60-min). The effect of precipitation sampling errors on flash flood warnings are then examined and quantified by using discharge simulated from KOUN (1-km/1-min) as truth to assess simulations conducted using other generated coarser spatial/temporal resolutions of other precipitation products. Our results show that: 1) observations with coarse spatial and temporal sampling can cause large errors in quantification of the amount, intensity, and distribution of precipitation, 2) time series of precipitation products show that QPE peak values decrease as the temporal resolution gets coarser, and 3) the effect of precipitation sampling error on flash flood forecasting is large in headwater areas and decrease quickly as drainage area increases.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...