ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-10
    Description: Two-component systems (TCS) are important types of machinery allowing for efficient signal recognition and transmission in bacterial cells. The majority of TCSs utilized by bacteria is composed of a sensor histidine kinase (HK) and a cognate response regulator (RR). In the present study, we report two newly predicted protein domains — both to be included in the next release of the Pfam database: Response_reg_2 (PF19192) and HEF_HK (PF19191) — in bacteria which exhibit high structural similarity, respectively, with typical domains of RRs and HKs. Additionally, the genes encoding for the novel predicted domains exhibit a 91.6% linkage observed across 644 genomic regions recovered from 628 different bacterial strains. The remarkable adjacent co-localization between genes carrying Response_reg_2 and HEF_HK in addition to their conserved structural features, which are highly similar to those from well-known HKs and RRs, raises the possibility of Response_reg_2 and HEF_HK constituting a new TCS in bacteria. The genomic regions in which these predicted two-component systems-like are located additionally exhibit an overrepresented presence of restriction-modification (R-M) systems especially the type II R-M. Among these, there is a conspicuous presence of C-5 cytosine-specific DNA methylases which may indicate a functional association with the newly discovered domains. The solid presence of R-M systems and the presence of the GHKL family domain HATPase_c_3 across most of the HEF_HK-containing genes are also indicative that these genes are evolutionarily related to the paraMORC family of ATPases.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...