ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-01
    Description: The advance speed of a longwall face is an essential factor affecting the mining pressure and overburden movement, and an effective approach for choosing a reasonable advance speed to realise coal mine safety and efficient production is needed. To clarify the influence of advance speed on the overburden movement law of a fully mechanised longwall face, a time-space subsidence model of overburden movement is established by the continuous medium analysis method. The movement law of overburden in terms of the advance speed is obtained, and mining stress characteristics at different advance speeds are reasonably explained. The theoretical results of this model are further verified by a physical simulation experiment. The results support the following conclusions. (i) With increasing advance speed of the longwall face, the first (periodic) rupture interval of the main roof and the key stratum increase, while the subsidence of the roof, the fracture angle and the rotation angle of the roof decrease. (ii) With increasing advance speed, the roof displacement range decreases gradually, and the influence range of the advance speed on the roof subsidence is 75 m behind the longwall face. (iii) An increase in the advance speed of the longwall face from 4.89 to 15.23 m/d (daily advancing of the longwall face) results in a 3.28% increase in the impact load caused by the sliding instability of the fractured rock of the main roof and a 5.79% decrease in the additional load caused by the rotation of the main roof, ultimately resulting in a 9.63% increase in the average dynamic load coefficient of the support. The roof subsidence model based on advance speed is proposed to provide theoretical support for rational mining design and mining-pressure-control early warning for a fully mechanised longwall face.
    Print ISSN: 1742-2132
    Electronic ISSN: 1742-2140
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...