ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-12
    Description: While major progress has been made in the research of inertial confinement fusion, significant challenges remain in the pursuit of ignition. To tackle the challenges, we propose a double-cone ignition (DCI) scheme, in which two head-on gold cones are used to confine deuterium–tritium (DT) shells imploded by high-power laser pulses. The scheme is composed of four progressive controllable processes: quasi-isentropic compression, acceleration, head-on collision and fast heating of the compressed fuel. The quasi-isentropic compression is performed inside two head-on cones. At the later stage of the compression, the DT shells in the cones are accelerated to forward velocities of hundreds of km s –1 . The head-on collision of the compressed and accelerated fuels from the cone tips transfer the forward kinetic energy to the thermal energy of the colliding fuel with an increased density. The preheated high-density fuel can keep its status for a period of approximately 200 ps. Within this period, MeV electrons generated by ps heating laser pulses, guided by a ns laser-produced strong magnetic field further heat the fuel efficiently. Our simulations show that the implosion inside the head-on cones can greatly mitigate the energy requirement for compression; the collision can preheat the compressed fuel of approximately 300 g cm −3 to a temperature above keV. The fuel can then reach an ignition temperature of greater than 5 keV with magnetically assisted heating of MeV electrons generated by the heating laser pulses. Experimental campaigns to demonstrate the scheme have already begun. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 1)’.
    Print ISSN: 1364-503X
    Electronic ISSN: 1471-2962
    Topics: Mathematics , Physics , Technology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...