ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-15
    Description: Milk is a product that requires quality control at all stages of production: from the dairy farm, processing at the dairy plant to finished products. Milk is a complex multiphase polydisperse system, whose components not only determine the quality and price of raw milk, but also reflect the physiological state of the herd. Today’s production volumes and rates require simple, fast, cost-effective, and accurate analytical methods, and most manufacturers want to move away from methods that use reagents that increase analysis time and move to rapid analysis methods. The review presents methods for the rapid determination of the main components of milk, examines their advantages and disadvantages. Optical spectroscopy is a fast, non-destructive, precise, and reliable tool for determination of the main constituents and common adulterants in milk. While mid-infrared spectroscopy is a well-established off-line laboratory technique for the routine quality control of milk, near-infrared technologies provide relatively low-cost and robust solutions suitable for on-site and in-line applications on milking farms and dairy production facilities. Other techniques, discussed in this review, including Raman spectroscopy, atomic spectroscopy, molecular fluorescence spectroscopy, are also used for milk analysis but much less extensively. Acoustic methods are also suitable for non-destructive on-line analysis of milk. Acoustic characterization can provide information on fat content, particle size distribution of fat and proteins, changes in the biophysical properties of milk over time, the content of specific proteins and pollutants. The basic principles of ultrasonic techniques, including transmission, pulse-echo, interferometer, and microbalance approaches, are briefly described and milk parameters measured with their help, including frequency ranges and measurement accuracy, are given.
    Electronic ISSN: 2504-477X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...