ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-11-20
    Description: The water-gas shift (WGS) reaction is a well-known industrial process used for the production of hydrogen. During the last few decades, it has attracted renewed attention due to the need for high-purity hydrogen for fuel-cell processing systems. The aim of the present study was to develop a cost-effective and catalytically efficient formulation that combined the advantageous properties of transition metal oxides and gold nanoparticles. Alumina-supported copper- manganese mixed oxides were prepared by wet impregnation. The deposition-precipitation method was used for the synthesis of gold catalysts. The effect of the Cu:Mn molar ratio and the role of Au addition on the WGS reaction’s performance was evaluated. Considerable emphasis was put on the characterization of the as-prepared and WGS-tested samples by means of a number of physicochemical methods (X-ray powder diffraction, high-resolution transmission electron microscopy, electron paramagnetic resonance, X-ray photoelectron spectroscopy, and temperature-programmed reduction) in order to explain the relationship between the structure and the reductive and WGS behavior. Catalytic tests revealed the promotional effect of gold addition. The best performance of the gold-promoted sample with a higher Cu content, i.e., a Cu:Mn molar ratio of 2:1 might be related to the beneficial role of Au on the spinel decomposition and the highly dispersed copper particle formation during the reaction, thus, ensuring the presence of two highly dispersed active metallic phases. High-surface-area alumina that was modified with a surface fraction of Cu–Mn mixed oxides favored the stabilization of finely dispersed gold particles. These new catalytic systems are very promising for practical applications due to their economic viability because the composition mainly includes alumina (80%).
    Electronic ISSN: 2073-4344
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...