ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-06
    Description: Bone marrow (BM) fibrosis is a key pathomorphologic feature of patients (pts) with primary myelofibrosis (PMF) and the fibrotic phases of essential thrombocythemia (post-ET MF) and polycythemia vera (post-PV MF). The degree of BM fibrosis appears to correlate with survival. Indeed worse survival has been associated with increased BM fibrosis. The BM stromal microenvironment is important in the pathogenesis of BM fibrosis. Cellular components (fibroblasts, macrophages, endothelial cells, adipocytes), structural fibrils (collagen, reticulin) and extracellular matrix components are all forming elements of the BM stroma. Increased stromal fibrosis has been linked to abnormalities in the number/ function of megakaryocytes and platelets in hematologic diseases. Several cytokines like Platelet Derived Growth Factor (PDGF) and Transforming Growth Factor-Beta (TGF-b) have been also linked to the pathophysiology of BM fibrosis. PDGF has been shown to increase fibroblast growth in megakaryocytes and platelets although increased PDGF did not correlate with increased production of either reticulin or collagenous fibrosis. Moreover, PMF pts have increased TGF-b levels in platelets, megakaryocytes, and monocytes. Nitric Oxide (NO) is a ubiquitous gas important in physiologic processes particularly vasodilatation. Dysregulation of NO levels has been implicated in pulmonary hypertension (PH), hemoglobinopathies, and cardiovascular diseases. In Peyronie’s disease, a localized fibrosis of the penile tunica albuginea, increased NO production by expression of iNOS decreases collagen deposition by neutralization of profibrotic reactive oxygen species and decreased myofibroblast formation. Aside from its role in maintaining normal vascular tone, NO also plays a role in fibroblast formation and collagen biosynthesis. We previously reported that ruxolitinib, a JAK1/2 inhibitor restores NO levels leading to improvement of PH in MF pts (Tabarroki et al., Leukemia 2014). We now hypothesize that plasma/serum NO level is a key regulator of BM fibrosis in MF and that ruxolitinib treatment (Tx) leads to improvement of BM fibrosis by NO modulation. Using a Sievers 280i NO analyzer we measured the plasma/serum NO level of a large cohort (n=75) of pts with myeloid and myeloproliferative neoplasms (MPN) [MDS, RARS/RCMD=8; MPN, ET=8, PV=8, MF=24, Mastocytosis=7; MDS/MPN, CMML=11, MDS/MPN-U, RARS-T=9]. Healthy subjects (n=10) were used as a control. MPN pts had low NO (nM) levels among the pts studied with the lowest level found in MF pts: MF=30.31±11.8, PV=39.0±16.1, ET=36±20.3, RARS=74.6±41.7 (P=.01), CMML=84.4±89.2 (P=.04), RCMD=163.4±103.8 (P
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...