ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-11-18
    Description: Abstract 45 Fetal hematopoietic stem cells (HSCs) in mice differ from their adult counterparts in a number of key properties. These include a higher cycling activity, an ability to more rapidly reconstitute the HSC compartment of irradiated recipient mice, a higher output of myeloid as compared to lymphoid progeny, and a greater sensitivity to the self-renewal promoting activity of Steel factor. We have previously shown that most of these features of fetal HSCs are sustained until 3 weeks after birth at which time they are rapidly (within 1 week), completely and permanently replaced with the corresponding properties of adult HSCs. A candidate regulator of this transition, Hmga2, was identified based on its greater expression in highly purified fetal versus adult HSCs (CD45+EPCR+CD48−CD150+; E-SLAM cells) with persistence of this difference in the matching lineage-negative (lin−) compartments. Experiments in which Hmga2 was overexpressed by lentiviral transduction of purified adult HSCs which were then transplanted into irradiated mice provided evidence that this chromatin remodeling factor can activate a fetal-like HSC program in these cells; i.e., more rapidly reconstitute the HSC compartment (increased self-renewal response) and produce clones with a higher proportion of myeloid cells. Based on the known ability of the let-7 family of microRNAs (miRNAs) to target Hmga2 transcripts resulting in their degradation and/or translational repression, we next hypothesized that let-7 miRNAs might be involved in controlling HSC developmental programs. A comparison of the levels of expression of 6 members of the let-7 family in purified fetal and adult HSCs, as well as in lin− hematopoietic cells, showed that transcripts for all of these are higher in the adult subsets, although this difference was significant only for let-7b (p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...