ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-08-31
    Description: Nickel-based superalloys contain various elements which are added in order to make the alloys more resistant to thermal and mechanical stress and to the adverse operating environments in jet engines. In particular, higher combustion temperatures in the gas turbine are important, since they result in higher fuel efficiency and thus in lower CO2 emissions. In this paper, a semi-quantitative assessment scheme is used to evaluate the relative supply risks associated with elements contained in various Ni-based superalloys: aluminium, titanium, chromium, iron, cobalt, niobium, molybdenum, ruthenium, tantalum, tungsten, and rhenium. Twelve indicators on the elemental level and four aggregation methods are applied in order to obtain the supply risk at the alloy level. The supply risks for the elements rhenium, molybdenum and cobalt are found to be the highest. For three of the aggregation schemes, the spread in supply risk values for the different alloy types (as characterized by chemical composition and the endurance temperature) is generally narrow. The fourth, namely the cost-share’ aggregation scheme, gives rise to a broader distribution of supply risk values. This is mainly due to the introduction of rhenium as a component starting with second-generation single crystal alloys. The resulting higher supply risk appears, however, to be acceptable for jet engine applications due to the higher temperatures these alloys can endure.
    Electronic ISSN: 2079-9276
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...