ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-06-30
    Description: In this article, the computational methodology of the catenary–train–track system vibration analysis is presented and used to estimate the influence of vehicle body vibrations on the pantograph–catenary dynamic interaction. This issue is rarely referred in the literature, although any perturbations appearing at the pantograph–catenary interface are of great importance for high-speed railways. Vehicle body vibrations considered in this article are induced by the passage of train through the track stiffness discontinuity, being a frequent cause of significant dynamic effects. First, the most important assumptions of the computational model are presented, including the general idea of decomposing catenary–train–track dynamic system into two main subsystems and the concept of one-way coupling between them. Then, the pantograph base vibrations calculated for two train speeds (60 m/s, 100 m/s) and two cases of track discontinuity (a sudden increase and a sudden decrease in the stiffness of track substrate) are analyzed. Two cases of the railway vehicle suspension are considered – a typical two-stage suspension and a primary suspension alone. To evaluate catenary–pantograph dynamic interaction, the dynamic uplift of the contact wire at steady arm and the pantograph contact force is computed. It is demonstrated that an efficiency of the two-stage suspension grows with the train speed; hence, such vehicle suspension effectively suppresses strong sudden shocks of vehicle body, appearing while the train passes through the track stiffness discontinuity at a high speed. In a hypothetical case when the one-stage vehicle suspension is used, the pantograph base vibrations may increase the number of contact loss events at the catenary–pantograph interface.
    Print ISSN: 0137-6365
    Electronic ISSN: 2083-831X
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...