ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-08-28
    Description: A common challenge faced by liner operators in practice is to effectively allocate empty containers now in a way that minimizes the expectation of costs and reduces inefficiencies in the future with uncertainty. To incorporate uncertainties in the operational model, we formulate a two-stage stochastic programming model for the stochastic empty container repositioning (ECR) problem. This paper proposes a separable piecewise linear learning algorithm (SPELL) to approximate the expected cost function. The core of SPELL involves learning steps that provide information for updating the expected cost function adaptively through a sequence of piecewise linear separable approximations. Moreover, SPELL can utilize the network structure of the ECR problem and does not require any information about the distribution of the uncertain parameters. For the two-stage stochastic programs, we prove the convergence of SPELL. Computational results show that SPELL performs well in terms of operating costs. When the scale of the problem is very large and the dimensionality of the problem is increased, SPELL continues to provide consistent performance very efficiently and exhibits excellent convergence performance.
    Print ISSN: 1024-123X
    Electronic ISSN: 1563-5147
    Topics: Mathematics , Technology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...