ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-09-18
    Description: Summary The relatively short duration of the early stages of subduction results in a poor geological record, limiting our understanding of this critical stage. Here, we utilize a 2D numerical model of incipient subduction, that is the stage after a plate margin has formed with a slab tip that extends to a shallow depth and address the conditions under which subduction continues or fails. We assess energy budgets during the evolution from incipient subduction to either a failed or successful state, showing how the growth of potential energy, and slab pull, is resisted by the viscous dissipation within the lithosphere and the mantle. The role of rheology is also investigated, as deformation mechanisms operating in the crust and mantle facilitate subduction. In all models, the onset of subduction is characterized by high lithospheric viscous dissipation and low convergence velocities, whilst successful subduction sees the mantle become the main area of viscous dissipation. In contrast, failed subduction is defined by the lithospheric viscous dissipation exceeding the lithospheric potential energy release rate and velocities tend towards zero. We show that development of a subduction zone depends on the convergence rate, required to overcome thermal diffusion and to localise deformation along the margin. The results propose a minimum convergence rate of ∼ 0.5 cm yr−1 is required to reach a successful state, with 100 km of convergence over 20 Myr, emphasizing the critical role of the incipient stage.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...