ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-02-01
    Description: Since 1994 the U.S. Global Drifter Program (GDP) and its international partners cooperating within the Data Buoy Cooperation Panel (DBCP) of the World Meteorological Organization (WMO) and the United Nations Education, Scientific and Cultural Organization (UNESCO) have been deploying drifters equipped with barometers primarily in the extratropical regions of the world’s oceans in support of operational weather forecasting. To date, the impact of the drifter data isolated from other sources has never been studied. This essay quantifies and discusses the effect and the impact of in situ sea level atmospheric pressure (SLP) data from the global drifter array on numerical weather prediction using observing system experiments and forecast sensitivity observation impact studies. The in situ drifter SLP observations are extremely valuable for anchoring the global surface pressure field and significantly contributing to accurate marine weather forecasts, especially in regions where no other in situ observations are available, for example, the Southern Ocean. Furthermore, the forecast sensitivity observation impact analysis indicates that the SLP drifter data are the most valuable per-observation contributor of the Global Observing System (GOS). All these results give evidence that surface pressure observations of drifting buoys are essential ingredients of the GOS and that their quantity, quality, and distribution should be preserved as much as possible in order to avoid any analysis and forecast degradations. The barometer upgrade program offered by the GDP, under which GDP-funded drifters can be equipped with partner-funded accurate air pressure sensors, is a practical example of how the DBCP collaboration is executed. Interested parties are encouraged to contact the GDP to discuss upgrade opportunities.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...