ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-07-03
    Description: Fibrous sheath interacting protein 1 (FSIP1), a spermatogenesis-related testicular antigen, is expressed in abundance in breast cancers, particularly in those overexpressing human epidermal growth factor receptor 2 (HER2); however, little is known about its role in regulating the growth and metastasis of breast cancer cells. We and others have shown previously that FSIP1 expression in breast cancer correlates positively with HER2-positivity, recurrence, and metastases and negatively with survival. Here, using coimmunoprecipitation and microscale thermophoresis, we find that FSIP1 binds to the intracellular domain of HER2 directly. We further show that shRNA-inducedFSIP1knockdown in SKBR3 and MCF-7 breast cancer cells inhibits proliferation, stimulates apoptosis, attenuates epithelial–mesenchymal transition, and impairs migration and invasiveness. Consistent with reduced proliferation and enhanced apoptosis, xenotransplantation of SKBR3 cells stably transfected with sh-FSIP1intonu/numice results in reduced tumor volumes compared with sh-NC transplants. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping using sh-FSIP1gene signature yielded associations with extracellular matrix protein pathways, and a reduction in SNAI2 protein expression was confirmed on Western blot analysis. Complementarily, interrogation of the Connectivity Map using the same gene signature yielded, as top hits, chemicals known to inhibit epithelial–mesenchymal transition, including rapamycin, 17-N-allylamino-17-demethoxygeldanamycin, and LY294002. These compounds phenocopy the effects of sh-FSIP1on SKBR3 cell viability. Thus, FSIP1 suppression limits oncogenesis and invasiveness in breast cancer cells and, considering its absence in most other tissues, including normal breast, may become a potential target for breast cancer therapy.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...