ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-02-21
    Description: Polynucleotide ligases comprise a ubiquitous superfamily of nucleic acid repair enzymes that join 3′-OH and 5′-PO4DNA or RNA ends. Ligases react with ATP or NAD+and a divalent cation cofactor to form a covalent enzyme-(lysine-Nζ)–adenylate intermediate. Here, we report crystal structures of the founding members of the ATP-dependent RNA ligase family (T4 RNA ligase 1; Rnl1) and the NAD+-dependent DNA ligase family (Escherichia coliLigA), captured as their respective Michaelis complexes, which illuminate distinctive catalytic mechanisms of the lysine adenylylation reaction. The 2.2-Å Rnl1•ATP•(Mg2+)2structure highlights a two-metal mechanism, whereby: a ligase-bound “catalytic” Mg2+(H2O)5coordination complex lowers the pKaof the lysine nucleophile and stabilizes the transition state of the ATP α phosphate; a second octahedral Mg2+coordination complex bridges the β and γ phosphates; and protein elements unique to Rnl1 engage the γ phosphate and associated metal complex and orient the pyrophosphate leaving group for in-line catalysis. By contrast, the 1.55-Å LigA•NAD+•Mg2+structure reveals a one-metal mechanism in which a ligase-bound Mg2+(H2O)5complex lowers the lysine pKaand engages the NAD+α phosphate, but the β phosphate and the nicotinamide nucleoside of the nicotinamide mononucleotide (NMN) leaving group are oriented solely via atomic interactions with protein elements that are unique to the LigA clade. The two-metal versus one-metal dichotomy demarcates a branchpoint in ligase evolution and favors LigA as an antibacterial drug target.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...