ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-10-02
    Description: In March 2009 the NOAA/ESRL/GMD Carbon Cycle and Greenhouse Gases Group collaborated with the US Coast Guard (USCG) to establish the Alaska Coast Guard (ACG) sampling site, a unique addition to NOAA's atmospheric monitoring network. This collaboration takes advantage of USCG bi-weekly Arctic Domain Awareness (ADA) flights, conducted with Hercules C-130 aircraft from March to November each year. NOAA has installed window-replacement inlet plates on two USCG C-130 aircraft and deploys a pallet with NOAA instrumentation on each ADA flight. Flights typically last 8 h and cover a very large area, traveling from Kodiak, AK in the south up to Barrow, AK in the north, and making altitude profiles near the coast as well as in the interior. NOAA instrumentation on each flight includes: a flask sampling system, a continuous CO2/CH4/CO/H2O analyzer, a continuous ozone analyzer, and an ambient temperature and humidity sensor. GPS time and location from the aircraft's navigation system are also collected. Air samples collected in flight are analyzed at NOAA/ESRL for the major greenhouse gases and a variety of halocarbons and hydrocarbons that influence climate, stratospheric ozone, and air quality. Instruments on this aircraft are designed and deployed to be able to collect air samples and data autonomously, so that NOAA personnel visit the site only for installation at the beginning of each season. We present an assessment of the cavity ring-down spectroscopy (CRDS) CO2/CH4/CO/H2O analyzer performance operating on an aircraft over a three-year period. We describe the overall system for making accurate greenhouse gas measurements using a CRDS analyzer on an aircraft with minimal operator interaction. Short and long-term stability of the CRDS analyzer over a seven-month deployment period is better than 0.15 ppm, 2 ppb, and 5 ppb for CO2, CH4, CO respectively, considering differences of on-board reference tank measurements from a laboratory calibration performed prior to deployment. This stability is not affected by variation in pressure or temperature during flight. Biases and standard deviations of comparisons with flask samples suggest that atmospheric variability, flask-to-flask variability, and possible flask sampling biases may be driving biases in the comparison between flasks and in-situ CRDS measurements.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...