ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1980-12-11
    Description: The coherent structure dynamics in the near field of a circular jet has been experimentally explored by inducing ‘stable’ vortex pairing through controlled excitation (see Zaman & Hussain 1980) and applying phase-averaging techniques. Hot-wire measurements were made in a 7·62 cm air jet with laminar exit boundary layer at the Reynolds number ReD = 3·2 × 104, excited at the Strouhal number StD = 0·85. At a particular phase during the pairing process, spatial distributions of the phase-average longitudinal and lateral velocity perturbations (〈u)〉, 〈v〉), vorticity, streamlines, the coherent and background Reynolds stresses and turbulence intensities have been educed. These data have been obtained for four different locations occupied by the vortices at the same phase (preceding, during, and following the pairing event), in the region 0 〈 x/D 〈 5. Spatial distributions of these measures at four successive phases during the pairing process are also educed in an attempt to further understand the vortex-pairing dynamics. The flow physics is discussed on the basis of measurements over the physical extent of the vortical structures, phase-locked to specific phases of the pairing event and thus do not involve use of the Taylor hypothesis. The computed pseudostream functions at particular phases are compared with the corresponding streamlines drawn by the method of isoclines. Transition of the vortices is examined on the basis of vorticity diffusion, the superimposed random fluctuation field intensities and Reynolds stress and phase-locked circumferential correlation measurements. The peak vorticity drops rapidly owing to transition and interaction of the vortices during pairing but, farther downstream, the decay can be attributed to destruction of the coherent vorticity by the background turbulence Reynolds stress, especially at the locations of the latter's ‘saddle points’. Controlled excitation enhances the initial circumferential coherence of the vortical structures, but is ineffective in delaying turbulent breakdown near the end of the potential core; the breakdown appears to occur through evolution of the circumferential lobe structures. The coherent structure Reynolds stress is found to be much larger than the background turbulence Reynolds stress for 0 〈 x/D ≲ 3, but these two are comparable near the end of the jet potential core. The zone average of the coherent structure Reynolds stress over the cross-section of the merging vortex pair is much larger than that over a single vortical structure either before or after the completion of pairing. During the pairing process, such average correlations are found to be the largest at an early phase of the process while entrainment, turbulent breakdown as well as rapid diffusion of vorticity occur at a later phase. The regions of alternate positive and negative coherent Reynolds stresses associated with the structures and their interactions help explain ‘negative production’. © 1980, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...