ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1994-08-25
    Description: The evolution of three-dimensional disturbances in an incompressible mixing layer in an inviscid fluid is investigated as an initial-value problem. A Green's function approach is used to obtain a general space–time solution to the problem using a piecewise linear model for the basic flow, thereby making it possible to determine complete and closed-form analytical expressions for the variables with arbitrary input. Structure, kinetic energy, vorticity, and the evolution of material particles can be ascertained in detail. Moreover, these solutions represent the full three-dimensional disturbances that can grow exponentially or algebraically in time. For large time, the behaviour of these disturbances is dominated by the exponentially increasing discrete modes. For the early time, the behaviour is controlled by the algebraic variation due to the continuous spectrum. Contrary to Squire's theorem for normal mode analysis, the early-time behaviour indicates growth at comparable rates for all values of the wavenumbers and the initial growth of these disturbances is shown to rapidly increase. In particular, the disturbance kinetic energy can rise to a level approximately ten times its initial value before the exponentially growing normal mode prevails. As a result, the transient behaviour can trigger the roll-up of the mixing layer and its development into the well-known pattern that has been observed experimentally. © 1994, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...