ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-03-25
    Description: The effect of free-surface drift layers on the maximum height that a steady wave can attain without breaking is explored through experiments and numerical simulations. In the experiments, the waves are generated by lowing a two-dimensional fully submerged hydrofoil at constant depth, speed and angle of attack. The drift layer is generated by towing a plastic sheet on the water surface ahead of the hydrofoil It is found that the presence of this drift layer (free-surface wake) dramatically reduces the maximum non-breaking wave height and that this wave height correlates well with the surface drift velocity. In the simulations, the inviscid two-dimensional fully nonlinear Euler equations arc solved numerically. Initially symmetric wave profiles are superimposed on a parallel drift layer whose mean flow characteristics match those in the experiments. It is found that for large enough initial wave amplitudes a bulge forms at the crest on the forward face of the wave and the vorticity fluctuations just under the surface in this region grow dramatically in time. This behaviour is taken as a criterion to indicate impending wave breaking. The maximum non-breaking wave elevations obtained in this way are in good agreement with the experimental findings.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...