ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-05-20
    Description: Cloud initialization is a challenge in numerical weather prediction. Probably the most relevant observations for this task come from geostationary satellites. These satellites provide the cloud mask with high spatio-temporal resolution and low latencies. The low latency is an attractive option for nowcasting systems such as the solar irradiance nowcasting model MAD-WRF. In this study we examine the potential of using the cloud mask from the GOES-16 satellite over the contiguous U.S. for this particular application. With this aim, the GOES-16 cloud mask product is compared against CALIPSO retrievals during a two year period. Both the GOES-16 data and the CALIPSO retrievals are interpolated to a grid that covers the contiguous U.S. at 9 km of horizontal grid spacing that is being used in MAD-WRF nowcasts. Results indicate a probability of detection, or accuracy, of all sky conditions of 86.0%. However, the accuracy is higher for cloud detections, 90.9% than for clear sky detections 74.8%. The lower performance of clear sky retrievals is a result of missdetections during daytime. This is especially clear for summer, and for regions to the north of parallel 36 during winter. However, regions to the south of parallel 36 show acceptable performance during both daytime and nighttime. It is over these regions wherein the cloud mask product should show its largest potential to enhance the cloud initialization in the MAD-WRF model.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...