ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-06-30
    Description: Explicit forecasts of a tornado-like vortex (TLV) require subkilometer grid spacing because of their small size. Most previous TLV prediction studies started from interpolated kilometer grid spacing initial conditions (ICs) rather than subkilometer grid spacing ICs. The tornadoes embedded in the 8 May 2003 Oklahoma City tornadic supercell are used to understand the impact of IC resolution on TLV predictions. Two ICs at 500-m and 2-km grid spacings are, respectively, produced through an efficient dual-resolution (DR) and a single-coarse-resolution (SCR) EnVar ingesting a 2-km ensemble. Both experiments launch 1-h forecasts at 500-m grid spacing. Diagnostics of data assimilation (DA) cycling reveal DR produces stronger and broader rear-flank cold pools, more intense downdrafts and updrafts with finer scales, and more hydrometeors at high altitudes through accumulated differences between two DA algorithms. Relative differences in DR, compared to SCR, include the integration from higher-resolution analyses, the update for higher-resolution backgrounds, and the propagation of ensemble perturbations along higher-resolution model trajectory. Predictions for storm morphology and cold pools are more realistic in DR than in SCR. The DR-TLV tracks match better with the observed tornado tracks than SCR-TLV in timing of intensity variation, and in duration. Additional experiments suggest 1) the analyzed kinematic variables strongly influence timing of intensity variation through affecting both low-level rear-flank outflow and midlevel updraft; 2) potential temperature analysis by DR extends the second track’s duration consistent with enhanced low-level stretching, delayed broadening large-scale downdraft, and (or) increased near-surface baroclinic vorticity supply; and 3) hydrometeor analyses have little impact on TLV predictions.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...