ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-06-01
    Description: The assumption of a stationary global signal linked to El Niño–Southern Oscillation (ENSO) events is often used in paleo-ENSO proxy data interpretation. This paper attempts to investigate whether the assumption is valid during the last glacial maximum (LGM) over the region 60°S–90°N, 60°E−60°W. Using four models within phase 3 of the Paleoclimate Modeling Intercomparison Project framework that well reproduce ENSO-induced variabilities, differences from the preindustrial period to LGM in the ENSO-related sea surface temperature pattern and its impacts are investigated. Compared to the preindustrial period, the ENSO impacts are revealed to weaken and shift eastward during the LGM. According to multimodel medians, ENSO impacts on precipitation and near-surface air temperature are attenuated over most regions of concern, with percentage changes in both parameters averaging −21% for the whole region; the ENSO-induced Pacific–North America (PNA) teleconnection pattern is weakened, manifested by the 41% diminished center over the North Pacific and the almost vanished activity centers over the continent. Spatially, there is a zonal contraction of 13° for the sea surface warming of ENSO, as well as eastward migration over 10° for the ENSO-induced positive precipitation anomaly center over the tropical Pacific and the PNA teleconnection pattern outside the tropics. The aforementioned changes are linked to the altered climatic background during the LGM, which features a 16° eastward shift for the Pacific Walker circulation rising branch and a weakened waveguide in the midlatitudes. The results suggest that the hypothesis of stationary ENSO impacts should be applied cautiously to the past.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...