ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1996-05-31
    Description: Dual specificity protein phosphatases (DSPs) regulate mitogenic signal transduction and control the cell cycle. Here, the crystal structure of a human DSP, vaccinia H1-related phosphatase (or VHR), was determined at 2.1 angstrom resolution. A shallow active site pocket in VHR allows for the hydrolysis of phosphorylated serine, threonine, or tyrosine protein residues, whereas the deeper active site of protein tyrosine phosphatases (PTPs) restricts substrate specificity to only phosphotyrosine. Positively charged crevices near the active site may explain the enzyme's preference for substrates with two phosphorylated residues. The VHR structure defines a conserved structural scaffold for both DSPs and PTPs. A "recognition region," connecting helix alpha1 to strand beta1, may determine differences in substrate specificity between VHR, the PTPs, and other DSPs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuvaniyama, J -- Denu, J M -- Dixon, J E -- Saper, M A -- AI 34095/AI/NIAID NIH HHS/ -- DK18024/DK/NIDDK NIH HHS/ -- DK18849/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1996 May 31;272(5266):1328-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics Research Division and Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-1055, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8650541" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Dual Specificity Phosphatase 3 ; Humans ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Phosphorylation ; Phosphoserine/metabolism ; Phosphothreonine/metabolism ; Phosphotyrosine/metabolism ; *Protein Conformation ; Protein Folding ; *Protein Structure, Secondary ; Protein Tyrosine Phosphatases/*chemistry/metabolism ; Sequence Alignment ; Substrate Specificity ; Water/metabolism ; Yersinia/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...