ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-11-25
    Description: Light absorption by rhodopsin generates metarhodopsin, which activates heterotrimeric guanine nucleotide-binding proteins (G proteins) in photoreceptor cells of vertebrates and invertebrates. In contrast to vertebrate metarhodopsins, most invertebrate metarhodopsins are thermally stable and regenerate rhodopsin by absorption of a second photon. In experiments with Rh1 Drosophila rhodopsin, the thermal stability of metarhodopsin was found not to be an intrinsic property of the visual pigment but a consequence of its interaction with arrestin (49 kilodaltons). The stabilization of metarhodopsin resulted in a large decrease in the efficiency of G protein activation. Light absorption by thermally stable metarhodopsin initially regenerated an inactive rhodopsin-like intermediate, which was subsequently converted in the dark to active rhodopsin. The accumulation of inactive rhodopsin at higher light levels may represent a mechanism for gain regulation in the insect visual cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kiselev, A -- Subramaniam, S -- New York, N.Y. -- Science. 1994 Nov 25;266(5189):1369-73.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7973725" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens/*metabolism ; Arrestin ; Darkness ; Drosophila ; Eye Proteins/*metabolism ; GTP-Binding Proteins/*metabolism ; *Light ; Models, Biological ; Phosphorylation ; Photoreceptor Cells, Invertebrate/*metabolism ; Rhodopsin/*analogs & derivatives/chemistry/*metabolism ; Spectrophotometry, Ultraviolet ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...