ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1988-04-22
    Description: A cytoplasmic protein that greatly enhances the guanosine triphosphatase (GTPase) activity of N-ras protein but does not affect the activity of oncogenic ras mutants has been recently described. This protein (GAP) is shown here to be ubiquitous in higher eukaryotes and to interact with H-ras as well as with N-ras proteins. To identify the region of ras p21 with which GAP interacts, 21 H-ras mutant proteins were purified and tested for their ability to undergo stimulation of GTPase activity by GAP. Mutations in nonessential regions of H-ras p21 as well as mutations in its carboxyl-terminal domain (residues 165-185) and purine binding region (residues 117 and 119) did not decrease the ability of the protein to respond to GAP. In addition, an antibody against the carboxyl-terminal domain did not block GAP activity, supporting the conclusion that GAP does not interact with this region. Transforming mutations at positions 12, 59, and 61 (the phosphoryl binding region) abolished GTPase stimulation by GAP. Point mutations in the putative effector region of ras p21 (amino acids 35, 36, and 38) were also insensitive to GAP. However, a point mutation at position 39, shown previously not to impair effector function, did not alter GAP-p21 interaction. These results indicate that GAP interaction may be essential for ras p21 biological activity and that it may be a ras effector protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adari, H -- Lowy, D R -- Willumsen, B M -- Der, C J -- McCormick, F -- New York, N.Y. -- Science. 1988 Apr 22;240(4851):518-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Cetus Corporation, Emeryville, CA 94608.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2833817" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/immunology ; DNA Mutational Analysis ; Enzyme Activation ; GTP Phosphohydrolases/*metabolism ; GTP-Binding Proteins/*metabolism ; GTPase-Activating Proteins ; *Genes, ras ; Immunologic Techniques ; In Vitro Techniques ; Phosphoric Monoester Hydrolases/*metabolism ; Proteins/*metabolism ; Proto-Oncogene Proteins/*metabolism ; Structure-Activity Relationship ; ras GTPase-Activating Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...