ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-03-18
    Description: The hemagglutinin (HA) structure at 2.9 angstrom resolution, from a highly pathogenic Vietnamese H5N1 influenza virus, is more related to the 1918 and other human H1 HAs than to a 1997 duck H5 HA. Glycan microarray analysis of this Viet04 HA reveals an avian alpha2-3 sialic acid receptor binding preference. Introduction of mutations that can convert H1 serotype HAs to human alpha2-6 receptor specificity only enhanced or reduced affinity for avian-type receptors. However, mutations that can convert avian H2 and H3 HAs to human receptor specificity, when inserted onto the Viet04 H5 HA framework, permitted binding to a natural human alpha2-6 glycan, which suggests a path for this H5N1 virus to gain a foothold in the human population.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stevens, James -- Blixt, Ola -- Tumpey, Terrence M -- Taubenberger, Jeffery K -- Paulson, James C -- Wilson, Ian A -- AI058113/AI/NIAID NIH HHS/ -- AI42266/AI/NIAID NIH HHS/ -- CA55896/CA/NCI NIH HHS/ -- GM060938/GM/NIGMS NIH HHS/ -- GM062116/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Apr 21;312(5772):404-10. Epub 2006 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. jstevens@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16543414" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Antigenic Variation ; Binding Sites ; Birds ; Carbohydrate Conformation ; Cloning, Molecular ; Crystallography, X-Ray ; Glycosylation ; Hemagglutinin Glycoproteins, Influenza ; Virus/*chemistry/genetics/immunology/*metabolism ; Humans ; Influenza A Virus, H5N1 Subtype/*chemistry/genetics/metabolism/*pathogenicity ; Lung/virology ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Polysaccharides/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Receptors, Virus/chemistry/*metabolism ; Respiratory Mucosa/virology ; Sialic Acids/chemistry/metabolism ; Species Specificity ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...