ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-18
    Description: The shift to self-pollination is one of the most prevalent evolutionary transitions in flowering plants. In the selfing plant Arabidopsis thaliana, pseudogenes at the SCR and SRK self-incompatibility loci are believed to underlie the evolution of self-fertilization. Positive directional selection has driven the evolutionary fixation of pseudogene alleles of SCR, leading to substantially reduced nucleotide variation. Coalescent simulations indicate that this adaptive event may have occurred very recently and is possibly associated with the post-Pleistocene expansion of A. thaliana from glacial refugia. This suggests that ancillary morphological innovations associated with self-pollination can evolve rapidly after the inactivation of the self-incompatibility response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shimizu, Kentaro K -- Cork, Jennifer M -- Caicedo, Ana L -- Mays, Charlotte A -- Moore, Richard C -- Olsen, Kenneth M -- Ruzsa, Stephanie -- Coop, Graham -- Bustamante, Carlos D -- Awadalla, Philip -- Purugganan, Michael D -- New York, N.Y. -- Science. 2004 Dec 17;306(5704):2081-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, North Carolina State University, Box 7614, Raleigh, NC 27695, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15604405" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/*genetics/*physiology ; Biological Evolution ; Chromosome Mapping ; Climate ; DNA, Intergenic ; *Genes, Plant ; Genetic Variation ; Genome, Plant ; Geography ; Haplotypes ; Likelihood Functions ; Molecular Sequence Data ; Open Reading Frames ; Phylogeny ; Plant Proteins ; Pollen ; Polymorphism, Genetic ; Polymorphism, Single Nucleotide ; Protein Kinases/*genetics/physiology ; *Pseudogenes ; Recombination, Genetic ; *Selection, Genetic ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...