ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-07-20
    Description: The adhesion and friction of smooth polymer surfaces were studied below the glass transition temperature by use of a surface forces apparatus. The friction force of a crosslinked polymer was orders of magnitude less than that of an uncrosslinked polymer. In contrast, after chain scission of the outermost layers, the adhesion hysteresis and friction forces increase substantially. These results show that polymer-polymer adhesion hysteresis and friction depend on the dynamic rearrangement of the outermost polymer segments at shearing interfaces, and that both increase as a transition is made from crosslinked surfaces to surfaces with long chains to surfaces with quasi-free ends. The results suggest new ways for manipulating the adhesion and friction of polymer surfaces by adjusting the state of the surface chains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maeda, Nobuo -- Chen, Nianhuan -- Tirrell, Matthew -- Israelachvili, Jacob N -- New York, N.Y. -- Science. 2002 Jul 19;297(5580):379-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, College of Engineering, University of California, Santa Barbara, CA 93106, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12130780" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...