ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-03-29
    Description: Circuits in the cerebral cortex consist of thousands of neurons connected by millions of synapses. A precise understanding of these local networks requires relating circuit activity with the underlying network structure. For pyramidal cells in superficial mouse visual cortex (V1), a consensus is emerging that neurons with similar visual response properties excite each other, but the anatomical basis of this recurrent synaptic network is unknown. Here we combined physiological imaging and large-scale electron microscopy to study an excitatory network in V1. We found that layer 2/3 neurons organized into subnetworks defined by anatomical connectivity, with more connections within than between groups. More specifically, we found that pyramidal neurons with similar orientation selectivity preferentially formed synapses with each other, despite the fact that axons and dendrites of all orientation selectivities pass near (〈5 mum) each other with roughly equal probability. Therefore, we predict that mechanisms of functionally specific connectivity take place at the length scale of spines. Neurons with similar orientation tuning formed larger synapses, potentially enhancing the net effect of synaptic specificity. With the ability to study thousands of connections in a single circuit, functional connectomics is proving a powerful method to uncover the organizational logic of cortical networks.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844839/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844839/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Wei-Chung Allen -- Bonin, Vincent -- Reed, Michael -- Graham, Brett J -- Hood, Greg -- Glattfelder, Katie -- Reid, R Clay -- P30 EY012196/EY/NEI NIH HHS/ -- P30 EY12196/EY/NEI NIH HHS/ -- P41 GM103712/GM/NIGMS NIH HHS/ -- P41 RR006009/RR/NCRR NIH HHS/ -- P41 RR06009/RR/NCRR NIH HHS/ -- R01 EY010115/EY/NEI NIH HHS/ -- R01 EY10115/EY/NEI NIH HHS/ -- R01 NS075436/NS/NINDS NIH HHS/ -- R21 NS085320/NS/NINDS NIH HHS/ -- England -- Nature. 2016 Apr 21;532(7599):370-4. doi: 10.1038/nature17192. Epub 2016 Mar 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Neuro-Electronics Research Flanders, a research initiative by imec, Vlaams Instituut voor Biotechnologie (VIB) and Katholieke Universiteit (KU) Leuven, 3001 Leuven, Belgium. ; Biomedical Applications Group, Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA. ; Allen Institute for Brain Science, Seattle, Washington 98103, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27018655" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/physiology ; Calcium/analysis ; Dendrites/physiology ; Male ; Mice ; Mice, Inbred C57BL ; Photons ; Pyramidal Cells/cytology/physiology ; Synapses/metabolism ; Visual Cortex/*anatomy & histology/cytology/*physiology/ultrastructure ; Visual Pathways/anatomy & histology/*cytology/*physiology/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...