ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-09-12
    Description: To prime reverse transcription, retroviruses require annealing of a transfer RNA molecule to the U5 primer binding site (U5-PBS) region of the viral genome. The residues essential for primer annealing are initially locked in intramolecular interactions; hence, annealing requires the chaperone activity of the retroviral nucleocapsid (NC) protein to facilitate structural rearrangements. Here we show that, unlike classical chaperones, the Moloney murine leukaemia virus NC uses a unique mechanism for remodelling: it specifically targets multiple structured regions in both the U5-PBS and tRNA(Pro) primer that otherwise sequester residues necessary for annealing. This high-specificity and high-affinity binding by NC consequently liberates these sequestered residues--which are exactly complementary--for intermolecular interactions. Furthermore, NC utilizes a step-wise, entropy-driven mechanism to trigger both residue-specific destabilization and residue-specific release. Our structures of NC bound to U5-PBS and tRNA(Pro) reveal the structure-based mechanism for retroviral primer annealing and provide insights as to how ATP-independent chaperones can target specific RNAs amidst the cellular milieu of non-target RNAs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Sarah B -- Yildiz, F Zehra -- Lo, Jennifer A -- Wang, Bo -- D'Souza, Victoria M -- England -- Nature. 2014 Nov 27;515(7528):591-5. doi: 10.1038/nature13709. Epub 2014 Sep 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA [2] Department of Biology, Georgetown University, Washington DC 20057, USA. [3]. ; 1] Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA [2]. ; Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25209668" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Genome, Viral/genetics ; Humans ; *Models, Molecular ; *Moloney murine leukemia virus/chemistry/genetics ; Nuclear Magnetic Resonance, Biomolecular ; *Nucleocapsid Proteins/chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary ; *RNA, Transfer/chemistry/metabolism ; RNA, Viral/*chemistry/*metabolism ; Reverse Transcription/genetics/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...