ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-11-19
    Description: Cysteine is the most intrinsically nucleophilic amino acid in proteins, where its reactivity is tuned to perform diverse biochemical functions. The absence of a consensus sequence that defines functional cysteines in proteins has hindered their discovery and characterization. Here we describe a proteomics method to profile quantitatively the intrinsic reactivity of cysteine residues en masse directly in native biological systems. Hyper-reactivity was a rare feature among cysteines and it was found to specify a wide range of activities, including nucleophilic and reductive catalysis and sites of oxidative modification. Hyper-reactive cysteines were identified in several proteins of uncharacterized function, including a residue conserved across eukaryotic phylogeny that we show is required for yeast viability and is involved in iron-sulphur protein biogenesis. We also demonstrate that quantitative reactivity profiling can form the basis for screening and functional assignment of cysteines in computationally designed proteins, where it discriminated catalytically active from inactive cysteine hydrolase designs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058684/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058684/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weerapana, Eranthie -- Wang, Chu -- Simon, Gabriel M -- Richter, Florian -- Khare, Sagar -- Dillon, Myles B D -- Bachovchin, Daniel A -- Mowen, Kerri -- Baker, David -- Cravatt, Benjamin F -- CA087660/CA/NCI NIH HHS/ -- MH084512/MH/NIMH NIH HHS/ -- R01 CA087660/CA/NCI NIH HHS/ -- R01 CA087660-09/CA/NCI NIH HHS/ -- R01 GM085117/GM/NIGMS NIH HHS/ -- R01 GM090294/GM/NIGMS NIH HHS/ -- R01 GM090294-02/GM/NIGMS NIH HHS/ -- R37 CA087660/CA/NCI NIH HHS/ -- R37 CA087660-10/CA/NCI NIH HHS/ -- U54 MH084512/MH/NIMH NIH HHS/ -- U54 MH084512-030004/MH/NIMH NIH HHS/ -- England -- Nature. 2010 Dec 9;468(7325):790-5. doi: 10.1038/nature09472. Epub 2010 Nov 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21085121" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biocatalysis ; Cell Line, Tumor ; Conserved Sequence ; Cysteine/analysis/*metabolism ; Humans ; Hydrolases/chemistry/metabolism ; Iron-Sulfur Proteins/biosynthesis ; Liver/metabolism ; Mice ; Myocardium/metabolism ; Nuclear Proteins/chemistry/metabolism ; Oxidation-Reduction ; Protein Engineering ; Protein Hydrolysates ; Protein-Arginine N-Methyltransferases/chemistry/metabolism ; Proteins/*chemistry/*metabolism ; Proteome/*chemistry/*metabolism ; Proteomics/methods ; Repressor Proteins/chemistry/metabolism ; Saccharomyces cerevisiae/genetics/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...