ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-02-08
    Description: Successful vaccines contain not only protective antigen(s) but also an adjuvant component that triggers innate immune activation and is necessary for their optimal immunogenicity. In the case of DNA vaccines, this consists of plasmid DNA; however, the adjuvant element(s) as well as its intra- and inter-cellular innate immune signalling pathway(s) leading to the encoded antigen-specific T- and B-cell responses remain unclear. Here we demonstrate in vivo that TANK-binding kinase 1 (TBK1), a non-canonical IkappaB kinase, mediates the adjuvant effect of DNA vaccines and is essential for its immunogenicity in mice. Plasmid-DNA-activated, TBK1-dependent signalling and the resultant type-I interferon receptor-mediated signalling was required for induction of antigen-specific B and T cells, which occurred even in the absence of innate immune signalling through a well known CpG DNA sensor-Toll-like receptor 9 (TLR9) or Z-DNA binding protein 1 (ZBP1, also known as DAI, which was recently reported as a potential B-form DNA sensor). Moreover, bone-marrow-transfer experiments revealed that TBK1-mediated signalling in haematopoietic cells was critical for the induction of antigen-specific B and CD4(+) T cells, whereas in non-haematopoietic cells TBK1 was required for CD8(+) T-cell induction. These data suggest that TBK1 is a key signalling molecule for DNA-vaccine-induced immunogenicity, by differentially controlling DNA-activated innate immune signalling through haematopoietic and non-haematopoietic cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ishii, Ken J -- Kawagoe, Tatsukata -- Koyama, Shohei -- Matsui, Kosuke -- Kumar, Himanshu -- Kawai, Taro -- Uematsu, Satoshi -- Takeuchi, Osamu -- Takeshita, Fumihiko -- Coban, Cevayir -- Akira, Shizuo -- England -- Nature. 2008 Feb 7;451(7179):725-9. doi: 10.1038/nature06537.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST). kenishii@biken.osaka-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18256672" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Marrow/immunology ; Chimera/immunology ; DNA/immunology ; Electroporation ; Fibroblasts ; Glycoproteins/deficiency ; Immunity, Innate/*immunology ; Interferon Type I/immunology/metabolism ; Mice ; Protein-Serine-Threonine Kinases/deficiency/genetics/*metabolism ; Receptor, Interferon alpha-beta/deficiency/genetics/metabolism ; T-Lymphocytes/cytology/immunology ; Toll-Like Receptor 9/deficiency/genetics/metabolism ; Vaccination ; Vaccines, DNA/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...