ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-02-24
    Description: This paper illustrates the extension of Rayleigh wave-based surface acoustic wave (SAW) viscosity and density sensor previously developed by the authors for integration with microfluidics and printed circuit board (PCB)-based electronics. The SAW device is first modeled with a microchannel and analyzed using finite-element method (FEM) software. Precise fabrication, alignment, and bonding of polydimethylsiloxane microchannels on diced $Y$ - $Z$ lithium niobate substrates are accomplished. A high-frequency PCB is built to obtain a better performance for SAW device testing. Low glycerin concentrations in deionized (DI) water are analyzed. The FEM simulation results and vector network analyzer measurements of the devices with the microchannel and PCB integration are presented. For low-frequency SAW sensor, a sensitivity of 171.9 Hz/(% glycerin) or 5.57 kHz/(kg/ $text{m}^{2}surd text{s}$ ) in frequency shifts, 0.09°/(% glycerin) or 2.92°/(kg/ $text{m}^{2}surd text{s}$ ) in phase difference, and minimum signal-to-noise ratio of 13.9 dB are achieved at peak frequency of 29.7 MHz. On the other hand, high-frequency (86.1 MHz) SAW sensor provides a sensitivity of 937.5 Hz/(% glycerin) or 37.15 kHz/(kg/ $text{m}^{mathbf {2}}surd text{s}$ ) in absolute frequency shifts, 0.37°/(% glycerin) or 14.7°/(kg/ $text{m}^{mathbf {2}}surd text{s}$ ) in phase difference, and minimum signal-to-noise ratio - f 20.5 dB.
    Print ISSN: 1530-437X
    Electronic ISSN: 1558-1748
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...