ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-10-11
    Description: Self interacting proteins (SIPs) play an important role in various aspects of the structural and functional organization of the cell. Detecting SIPs is one of the most important issues in current molecular biology. Although a large number of SIPs data has been generated by experimental methods, wet laboratory approaches are both time-consuming and costly. In addition, they yield high false negative and positive rates. Thus, there is a great need for in silico methods to predict SIPs accurately and efficiently. In this study, a new sequence-based method is proposed to predict SIPs. The evolutionary information contained in Position-Specific Scoring Matrix (PSSM) is extracted from of protein with known sequence. Then, features are fed to an ensemble classifier to distinguish the self-interacting and non-self-interacting proteins. When performed on Saccharomyces cerevisiae and Human SIPs data sets, the proposed method can achieve high accuracies of 86.86 and 91.30 percent, respectively. Our method also shows a good performance when compared with the SVM classifier and previous methods. Consequently, the proposed method can be considered to be a novel promising tool to predict SIPs.
    Print ISSN: 1545-5963
    Electronic ISSN: 1557-9964
    Topics: Biology , Computer Science
    Published by Institute of Electrical and Electronics Engineers (IEEE) on behalf of The IEEE Computational Intelligence Society ; The IEEE Computer Society ; The IEEE Control Systems Society ; The IEEE Engineering in Medicine and Biology Society ; The Association for Computing Machinery.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...