ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-02-22
    Description: Author(s): Bohm-Jung Yang, Troels Arnfred Bojesen, Takahiro Morimoto, and Akira Furusaki Recently, there have been extensive efforts to extend the physics of the two-dimensional (2D) graphene to three-dimensional (3D) semimetals with point/line nodes. Although it has been known that certain crystalline symmetries play an important role in protecting band degeneracy, a general recipe for stabilizing the degeneracy, especially in the presence of spin-orbit coupling, is still lacking. Here, the authors show that a class of novel topological semimetals with point/line nodes can emerge in the presence of an off-centered rotation/mirror symmetry whose symmetry line/plane is displaced from the center of other symmorphic symmetries in nonsymmorphic crystals. Due to the partial translation perpendicular to the rotation axis/mirror plane, an off-centered rotation/mirror symmetry always forces two energy bands to stick together and form a doublet pair in the relevant invariant line/plane in momentum space. Such a doublet pair provides a basic building block for emerging topological semimetals with point/line nodes in systems with strong spin-orbit coupling. When an external magnetic field is applied to these semimetals, a Dirac-type point/line node with four-fold degeneracy splits into two Weyl-type point/line nodes with two-fold degeneracy, with emergent surface states connecting the split nodes. [Phys. Rev. B 95, 075135] Published Tue Feb 21, 2017
    Keywords: Electronic structure and strongly correlated systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...