ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-08-10
    Description: The efficacy of chemotherapy is hindered by both tumor heterogeneity and acquired or intrinsic multi- drug resistance caused by the contribution of multidrug resistance proteins and stemness-associated prosurvival markers. Therefore, targeting multi-drug resistant cells would be much more effective against cancer. In this study, we characterized the chemoresistance properties of adherent (anchorage- dependent) lung H460 and breast MCF-7 cancer cells growing under prolonged periods of serum starvation (PPSS). We found that under PPSS, both cell lines were highly resistant to Paclitaxel, Colchicine, Hydroxyurea, Obatoclax, Wortmannin and LY294002. Levels of several proteins associated with increased stemness such as Sox2, MDR1, ABCG2 and Bcl-2 were found to be elevated in H460 cells but not in MCF-7 cells. While pharmacological inhibition of either MDR1, ABCG2, Bcl-2 with Verapamil, Sorafenib or Obatoclax respectively decreased the levels of their target proteins under routine culture conditions as expected, such inhibition did not reverse PX resistance in PPSS conditions. Paradoxically, treatment with inhibitors in serum-starved conditions produced an elevation of their respective target proteins. In addition, we found that Digitoxin, an FDA approved drug that decrease the viability of cancer cells growing under PPSS, downregulates the expression of Sox2, MDR1, phospho- AKT, Wnt5a/b and β-catenin. Our data suggests that PPSS-induced chemoresistance is the result of extensive rewiring of intracellular signaling networks and that multi-resistance can be effectively overcome by simultaneously targeting multiple targets of the rewired network. Furthermore, our PPSS model provides a simple and useful tool to screen drugs for their ability to target multiple pathways of cancer resistance. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...