ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-07-19
    Description: Domain wall nanomagnet (DWNM)-based devices have been extensively studied as a promising alternative to the conventional CMOS technology in both the memory and logic implementations due to their non-volatility, near-zero standby power, and high integration density characteristics. In this paper, we leverage a physics-based model of a DWNM device to design a highly scalable current-mode majority gate to achieve a novel one bit full-adder (FA) circuit. The modeled DWNM specifications are calibrated with the experimentally measured data. The functionality of the proposed DWNM-based FA (DWNM-FA) is verified using a SPICE circuit simulator. The detailed analysis and the calculations have been performed to realize the proposed DWNM-FA delay and power consumption corresponding to the various induced input currents at different operating temperatures. The power-delay product of DWNM-FA is examined to tune the operation within the optimum induced input current region to obtain desired power-delay requirements over a range of 200 $mu text{A}$ to 1 mA at temperatures from 298 to 378 K. Finally, the comparison results exhibit 52% and 49% area improvement as well as 41% and 31% improvement in device count complexity over CMOS-based and magnetic tunnel junction-based FA designs, respectively.
    Print ISSN: 0018-9464
    Electronic ISSN: 1941-0069
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...