ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-26
    Description: In order to thrive in a time of rapid sea-level rise, tidal marshes will need to migrate upslope into adjacent uplands. Yet little is known about the mechanics of this process, especially in urbanized estuaries, where the adjacent upland is likely to be a mowed lawn rather than a wooded natural area. We studied marsh migration in a Long Island Sound salt marsh using detailed hydrologic, edaphic, and biotic sampling along marsh-to-upland transects in both wooded and lawn environments. We found that the overall pace of marsh development was largely unaffected by whether the upland being invaded was lawn or wooded, but the marsh-edge plant communities that developed in these two environments were quite different, and some indicators (soil salinity, foraminifera) appeared to migrate more easily into lawns. In addition, we found that different aspects of marsh structure and function migrated at different rates: wetland vegetation appeared to be a leading indicator of marsh migration, while soil characteristics such as redox potential and surface salinity developed later in the process. We defined a “hydrologic migration zone,” consisting of elevations that experience tidal inundation with frequencies ranging from 20% to 0.5% of high tides. This hydrologically defined zone – which extended to an elevation higher than the highest astronomical tide (HAT) datum – captured the biotic and edaphic marsh-upland ecotone. Tidal inundation at the upper border of this migration zone is highly variable over time and may be rising more rapidly than mean sea level. Our results indicate that land management practices at the upland periphery of tidal marshes can facilitate or impede ecosystem migration in response to rising sea level. These findings are applicable to large areas of tidal marsh along the U.S. Atlantic coast and in other urbanized coastal settings. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...